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Abstract. In this paper we introduce a pruning technique based on slopes in the context of interval
branch-and-bound methods for nonsmooth global optimization. We develop the theory for a slope
pruning step which can be utilized as an accelerating device similar to the monotonicity test fre-
quently used in interval methods for smooth problems. This pruning step offers the possibility to cut
away a large part of the box currently investigated by the optimization algorithm. We underline the
new technique’s efficiency by comparing two variants of a global optimization model algorithm: one
equipped with the monotonicity test and one equipped with the pruning step. For this reason, we
compared the required CPU time, the number of function and derivative or slope evaluations, and
the necessary storage space when solving several smooth global optimization problems with the two
variants. The paper concludes on the test results for several nonsmooth examples.
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1. Introduction

Interval branch-and-bound methods for global optimization address the problem of
finding guaranteed and reliable solutions of global optimization problems

min
x∈X f (x), (1)

wheref : D → R is the objective function andX ⊆ D is the search box
representing bound constraints forx. These methods usually apply several interval
techniques to reject regions in which the optimum can be guaranteed not to lie.
For this reason, the original boxX gets subdivided, and subregions which cannot
contain a global minimizer off are discarded, while the other subregions get
subdivided again until the desired accuracy (width) of the boxes is achieved.

Very often, iff is continuously differentiable, these interval methods incorpo-
rate the so called monotonicity test (see [3, 4, 6, 8, 11, 12] for example) to discard
boxes. This test uses first-order information of the objective function by means of
an interval evaluation of the derivative over the current box. Depending on this
enclosure containing zero or not, the current box must be treated further or can be
deleted, respectively. Moreover, the interval derivative evaluation together with a
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centered form (see [1, 8, 10] for example) is often used to improve the enclosure
of the function range.

On the other hand, it is well known that interval slopes (introduced by Krawczyk
and Neumaier [9]) together with centered forms offer the possibility to achieve
better enclosures for the function range, as described in [8] and [10], for example.
Thus, they might improve the performance of interval branch-and-bound methods.
Although, since slopes cannot replace the derivatives needed in the monotonicity
test (see Section 3 for details), the necessity of alternative box-discarding tech-
niques arises.

In this paper, we introduce a new method for computing verified enclosures
for the global minimum value and all global minimum points of nonsmooth one-
dimensional functions subject to bound constraints. The method incorporates a
special pruning step generated by interval slopes. This pruning step offers the
possibility to cut away a large part of the current box, independently of the slope
interval containing zero or not. We develop the theory for this slope pruning step
and we give several examples.

During the review of the original version of this paper, one of the referees
pointed out strong similarities between the techniques presented in this paper and
the tests introduced by Hansen et al. in [7]. We got to know this very intersting pa-
per only afterwards. At first glance, there are such similarities. In fact, our method
was developed independently, it is motivated by the nonsmoothness of the objective
function, and it is based on a different approach.

The method of Hansen et al. assumes that the objective function is at least three
times differentiable. The derivatives of higher order are used to improve the bounds
for the function range by means of centered forms. Therefore, tests like the cut-off
test can be more powerful. Moreover, the derivatives are utilized to compute so-
called cord-slopes which are used by several tests to eliminate parts of the search
area.

In contrast, our technique uses interval slopes computed recursively (in the
sense of [10], see Section 2 for details). Therefore, no requirements concerning the
smoothness of the objective functions are necessary. Additionally, in the smooth
case the recursively computed slope enclosures can be tighter than cord-slopes.

Moreover, we do not need the assumption that the objective function has only
finitely many local minima, which is made in [7]. This is due to the fact that our
pruning technique is based on a case distinction different from the one used by
the tests in [7] (see Section 3 for details). Thus, in [7] it is only proven that the
function values in the deleted parts of the current interval are not smaller than the
global minimum value. In contrast, we additionally prove that our pruning step
does not delete any global minimizer.

Thus, in some respects the method presented in this paper is a generalization
of the tests on the function value introduced in [7] to the problem of finding
the set of all minimizers (even a continuum of points) of nonsmooth functions.
Since the method of Hansen et al. uses higher derivatives, it is not possible to



A NONSMOOTH GLOBAL OPTIMIZATION TECHNIQUE 367

compare the results of both methods. Therefore, we study the effect of the applica-
tion of our slope pruning step when replacing the monotonicity test in a first-order
model algorithm for global optimization. We underline the improvements with re-
spect to the required CPU time, the number of function and derivative evaluations,
and the necessary storage space when solving several smooth global optimization
problems.

In the following,X ⊆ D ⊆ R andf : D → R. The global minimum value of
f onX is denoted byf ∗, and the set of global minimizer points off onX byX∗.
That is,

f ∗ = min
x∈X f (x) and X∗ = {x∗ ∈ X | f (x∗) = f ∗}.

We denote real numbers byx, y, . . . and real bounded and closed intervals
by X = [x, x], Y = [y, y], . . . , where minX = x, maxX = x, minY = y,
maxY = y, etc.

The set of compact intervals is denoted byI := {[a, b] | a ≤ b, a, b ∈ R}. The
width of the intervalX is defined byw(X) = maxX−minX, and the midpoint of
the intervalX is defined bym(X) = (minX +maxX)/2.

We call a functionF : I → I an inclusion functionof f : R → R in X, if
x ∈ X implies f (x) ∈ F(X). In other words,f (X) = frg(X) ⊆ F(X), where
f (X) = frg(X) is the range of the functionf onX. The inclusion function of the
derivative off is denoted byF ′. Inclusion functions can be computed via interval
arithmetic [1, 4] for almost all functions specified by a finite algorithm (i.e. not only
for given expressions). Moreover, applying so-called automatic differentiation or
differentiation arithmetic in connection with interval arithmetic [4, 5, 8], we are
also able to compute the inclusion function for the derivatives or the slopes.

Automatic differentiation combines the advantages of symbolic and numerical
differentiation and handles numbers instead of symbolic formulas. The computa-
tion of the derivative (or slope) is done automatically together with the computation
of the function value. The main advantage of this process is that only the algorithm
or formula for the function is required. No explicit formulas for the derivative (or
slope) is required.

It is assumed in the following that the inclusion functions have theisotonicity
property, i.e.X ⊆ Y impliesF(X) ⊆ F(Y ).

2. Slopes and centered forms

Centered forms (see [1, 8–10]) are special interval expansions and serve to reduce
the overestimation in computing interval enclosures of the range of a functionf

over some intervalX. Usually, a centered form is derived from the mean-value
theorem. Supposef is differentiable on its domainD. Then f (x) = f (c) +
f ′(ξ)(x − c) with some fixedc ∈ D and ξ betweenx and c. Let c, x ∈ X, so
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ξ ∈ X. Therefore

f (x) = f (c)+ f ′(ξ)(x − c) ∈ f (c)+ f ′(X) · (x − c)
⊆ f (c)+ F ′(X) · (X − c), c, x ∈ X.

(2)

Here,f is expanded with respect to everyx ∈ X, sinceG = F ′(X) is an interval
evaluation of the derivative off over the entire intervalX.

Krawczyk and Neumaier [10] showed that if we have an intervalS ∈ I such
that, for allx ∈ X we have

f (x) = f (c)+ s · (x − c) for somes ∈ S, (3)

then the intervalFs(X) := f (c)+ S · (X− c) encloses the range off overX, that
is frg(X) ⊆ Fs(X). Such an intervalS can be calculated by means of an interval
slope and not only with an interval derivative. If we use a slope, thenf is expanded
with respect to an arbitrary but fixedc ∈ X.

DEFINITION 1. The functionsf : D ×D→ R with

f (x) = f (c)+ sf (c, x) · (x − c)
is called aslope(betweenc andx). In the one-dimensional case (D ⊆ R), we have

sf (c, x) =

f (x)− f (c)

x − c if x 6= c
s̃ if x = c,

wherẽs ∈ R may be arbitrarily chosen. Assumingf to be differentiable and the
slope to be continuous, we can defines̃ := f ′(c).

Moreover, we define theinterval slopeof f over the intervalX by

sf (c,X) := {sf (c, x) | x ∈ X, x 6= c},
wheref needs not be differentiable.

REMARKS. (i) It is easy to see, thatS = sf (c,X) satisfies (3) and

f (x) ∈ f (c)+ S · (x − c) ⊆ f (c)+ S · (X − c). (4)

(ii) Often c = m(X) is used to compute the interval slope.
(iii) If we assumef to be continuously differentiable, then we have

f ′(X) =
⋃
c∈X

sf (c,X)

(cf. [10]).
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Slopes as well as interval slopes can be calculated by means of a process sim-
ilar to automatic differentiation process ([4], [8], [10]). The main advantage of
this process is that only the algorithm or formula for the function is required. No
explicit formulas for the derivatives or slopes are required.

Automatic slope computation evaluates functions specified by algorithms or
formulas, where all operations are executed according to the rules of aslope arith-
metic, which is an arithmetic for ordered tripels of the form

U = (Ux,Uc, Us), with Ux,Uc,Us ∈ I.
For a functionu : D → R with D ⊆ R, we have for an intervalX ∈ I (X ⊆ D)
and for a fixedc ∈ X

u(x) ∈ Ux,

u(c) ∈ Uc and

u(x)− u(c) ∈ Us · (x − c)

for all x ∈ X.
For the constant functionu(x) = λwe use the representationC = (λ, λ,0). The

functionu(x) = x, representing the independent variablex, we useX = (X, c,1),
where againc ∈ X is fixed.

The rules for the arithmetic are

W = U ± V ⇒
 Wx = Ux ± Vx,
Wc = Uc ± Vc,
Ws = Us ± Vs,

W = U · V ⇒
 Wx = Ux · Vx,
Wc = Uc · Vc,
Ws = Ux · Vs + Us · Vc,

W = U / V ⇒
 Wx = Ux/Vx,

Wc = Uc/Vc,

Ws = (Us −Wc · Vs)/Vx,
where 06∈ Vx is assumed in case of division. The operations forWx ,Wc andWs in
this definition are operations for intervals.

For an elementary functionϕ andU = (Ux,Uc, Us), we define:

W = ϕ(U)⇒
 Wx = ϕ(Ux),

Wc = ϕ(Uc),

Ws = Us · sϕ(Uc, Ux).

Usually,sϕ(Uc, Ux) must be replaced byϕ′(Ux), but for convex or concave func-
tionsϕ (at least locally inX) like ( )2,√ , exp, or ln, the slopesϕ(Uc, Ux) can be



370 D. RATZ

computed explicitly, which yields better (sharper) enclosures. For example

sϕ(Uc, Ux) =


Ux + Uc if ϕ = ( )2,
1/(Wx +Wc) if ϕ = √ ,

[sϕ(uc, ux), sϕ(uc, ux)] if ϕ = ( )4.
Details can be found in [14] or in [15].

Evaluation off : D → R over A ∈ I with fixed c ∈ A using the slope
arithmetic delivers

f (X) = f ((A, c,1)) = (Yx, Yc, Ys)
and we have

frg(A) ⊆ Yx, f (c) ∈ Yc and f (x)− f (c) ∈ Ys · (x − c) ∀x ∈ A.
EXAMPLE 1. Letf (x) = x2 − 4x + 2. Using the slope arithmetic, we compute
the enclosureYs of sf (c,A) for A = [1,7] andc = 4 by

f (X) = f ((A, c,1))

= (A, c,1)2 − 4 · (A, c,1) + 2

= ([1,7],4,1)2 − (4,4,0) · ([1,7],4,1) + (2,2,0)
= ([1,49],16,[5,11]) − ([4,28],16,4) + (2,2,0)
= ([−25,47],2, [1,7])
= (Yx, Yc, Ys),

and we haveYs = sf (c,A) = [1,7]. In contrast, if we compute the interval
evaluation off ′(x) = 2x − 4 overA = [1,7] (which might also be done by
automatic differentiation [5]), we get

F ′(A) = 2 · [1,7] − 4= [−2,10].
Now, if we compare the naive interval evaluation off overA with the derivative
and the slope expansion we have

F(A) = A2 − 4A+ 2 = [−25,47],
f (c)+ F ′(A) · (A− c) = [−28,32],

f (c)+ Ys · (A− c) = [−19,23],
underlining that the slope expansion gives the best result.

REMARKS. (i) In [2], a method is proposed to compute and use linear lower
bounds for special functions in the context of one-dimensional global optimization.
With the help of a slope arithmetic and with (3) and (4) it is possible to compute
such linear lower bounds automatically.
(ii) If we compare the process of automatic slope computation using the slope
arithmetic with the process of computing cord-slopes as given in [7], we can see
that the recursively computed interval slopes can be tighter than cord-slopes.
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EXAMPLE 2. Let f (x) = (x − 2)4, X = [1,7], andc = 4. With the slope
arithmetic we obtain

sf (c,X) =
[

1− 16

1− 4
,

625− 16

7− 4

]
= [5,203].

To compute the cord-slope interval[L0, U0] as defined in [7], we need the deriva-
tivesf ′(x) = 4(x − 2)3, f ′′(x) = 12(x− 2)2, andf ′′′(x) = 24(x− 2). Using the
true ranges for these derivatives, we obtain

[L0, U0] =f ′(X) ∩ (f ′(c)+ f ′′(X)(X − c)/2)
∩ (f ′(c)+ f ′′(c)(X − c)/2+ f ′′′(X)(X − c)2/6

=[−4,500] ∩(32+ [0,300][−3,3]/2
∩ (32+ 48[−3,3]/2+ [−24,120][0,9]/6

=[−4,500] ∩ [−418,482] ∩ [−76,284]
=[−4,284],

which is a wider interval thansf (c,X).

3. A pruning technique using slopes

In first-order interval methods for global optimization, the monotonicity test deter-
mines whether the functionf is strictly monotonein an entire subintervalY ⊂ X.
If this is the case, thenY cannot contain a global minimizer in its interior. Further,
a global minimizer can only lie on a boundary point ofY if this point is also a
boundary point ofX. Therefore, iff satisfies

0 6∈ F ′(Y ), (5)

then the subboxY can be deleted (with the exception of boundary points ofX).
If we want to apply slopes instead of derivatives, we cannot use this monotonic-

ity test, since we havesf (c,X) ⊆ F ′(X), but in general it isnot true that
f ′(x) ∈ sf (c,X) ∀c, x ∈ X. Therefore, althoughx∗ ∈ Y is a local (or even
global) minimizer withf ′(x∗) = 0, it might happen that 06∈ sf (c, Y ), and the
latter cannot be used as a criterion to discard the boxY .

EXAMPLE 3. We again consider the functionf from Example 1. Sincef (x) =
x2 − 4x + 2 = (x − 2)2 − 2, we can easily see thatx∗ = 2 is a local and global
minimizer of f . With Y = A = [1,7] we havesf (c, Y ) = [1,7] showing that
0 6∈ sf (c, Y ) cannot be used as a criterion to discardY , sincex∗ ∈ Y .

On the other hand, it is underlined in [3], that the monotonicity test is an es-
sential accelerating tool for an efficient interval global optimization method. Thus,
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the need of a corresponding tool (applicable to nonsmooth problems) in connection
with slopes arises. In the following, we develop such a tool, which we call apruning
step using slopes. We assume the (possibly nonsmooth) objective functionf to be
continuous.

The main idea for the pruning step is based on the slope extension (4) and
our subsequent Theorem 1. Improvements which take into account a known upper
bound for the global minimum value are based on Theorems 2, 3 and 4.

THEOREM 1. Letf : D → R, Y = [y, y] ∈ I, c ∈ Y ⊆ D ⊆ R. Moreover, let
S = [s, s] = sf (c, Y ) with s > 0. Then

p := c + (y − c) · s/s
satisfies

y ≤ p ≤ c (6)

and

min
x∈Y f (x) = min

x∈[y,p] f (x) < min
p<x≤y

f (x). (7)

Proof.Sincey ≤ c and 0< s/s ≤ 1, we have

y = (1− s/s) · y + s/s · y ≤ (1− s/s) · c + s/s · y = c + (y − c) · s/s︸ ︷︷ ︸= p
≤ c,

which proves (6).
From (3) and (4) we know that for allx ∈ (c, y] there exists ansx > 0 with

sx ∈ S and

f (x) = f (c)+ sx · (x − c).
Therefore,f (x) > f (c), ∀x ∈ (c, y], and thus we know that

min
x∈Y f (x) = min

x∈[y,c] f (x).

Now lety∗ ∈ Y with

f (y∗) = min
x∈Y

f (x). (8)

If we assume thatp < y∗ ≤ c, then we know that there existsl ∈ S ands∗ ∈ S
satisfyingf (y) = f (c)+ sl · (y − c) andf (y∗) = f (c)+ s∗ · (y∗ − c). Thus we
have

f (y) = f (c)+ sl · (y − c)
≤ f (c)+ s · (y − c)
= f (c)+ s · (p − c)
< f (c)+ s · (y∗ − c)
≤ f (c)+ s∗ · (y∗ − c)
= f (y∗),
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Figure 1. Generation of the pruning pointp for positive interval slope.

ie. f (y) < f (y∗) which contradicts (8), and thereforey∗ ≤ p which proves (7).2
Figure 1 illustrates the geometrical interpretation for finding the pointp. First

of all, we define the two lines

g : R→ R g(x) := f (c)+ s · (x − c) (9)

and

h : R→ R h(x) := f (c)+ s · (x − c). (10)

Then we know thatg(y) is an upper bound forf (y) and thus for minx∈Y f (x). Now
we can locatep as the leftmost point inY , for which f can not fall belowg(y).
Sinceh is a lower bound forf in [y, c], we can do this very simply by computing
the intersection point ofh and the horizontal linez with z(x) = g(y).

Using the valuep of Theorem 1 within a global optimization method, we can
prune a subintervalY ⊆ X, if 0 < s ≤ s for S = sf (c, Y ) to

YP := [y, c + (y − c) · s/s].

EXAMPLE 4. We considerf (x) = 1/2x2, and we assume the current interval to
beY = [−1,4]. First of all, we try to apply the monotonicity test. We evaluate the
derivativef ′(x) = x overY , and we getF ′(Y ) = Y = [−1,4]. Since 0∈ F ′(Y ),
we cannot discardY from further consideration, and we must subdivide it and treat
parts ofY in the same manner.
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Now, we apply our new pruning step. We first evaluate the interval slopeS =
sf (c, Y ) = 1

2(c + Y ), and withc = 1.5 we getS = [0.25,2.75]. Since 06∈ S we
can pruneY to

YP = [y, c + (y − c) · s/s] = [−1,1.5+ (−1− 1.5) · 0.25/2.75]
= [−1,1.273]

using four significant digits and rounding outwards.

If we recall the situation in Figure 1, we see that we are able to improve the
pruning of an intervalY . We can improve the pointp (by moving it to the left), if
we know a better (smaller) upper bound̃f for f (x) onY thang(y) was. Moreover,

if f̃ is an upper bound for the global minimum valuef ∗ on the whole search
boxX, then we can locatep as the leftmost point inY , for which f can not fall
below f̃ . Sinceh is a lower bound forf neary, we can do this by computing the
intersection point ofh and the horizontal linez with z(x) = f̃ . In the context of
a global optimization method using branch-and-bound techniques such as the cut-
off test, an improved upper bound̃f for the global minimum valuef ∗ is usually
known. Therefore, we can state

THEOREM 2. Letf : D→ R, Y = [y, y] ∈ I, c ∈ Y ⊆ X ⊆ D ⊆ R. Moreover,
let S = [s, s] = sf (c, Y ) with s > 0 and

f̃ ≥ f ∗ = min
x∈X f (x). (11)

Thenp := c +m/s withm = min{f̃ − f (c), (y − c) · s} satisfies

p ≤ c, (12)

and

min
p<x≤y

f (x) > f ∗ for y ≤ p (13)

or

min
x∈Y f (x) > f ∗ for p < y, (14)

respectively.
Proof.Sincey ≤ c and 0< s ≤ s, we havem ≤ 0 and

p = c +m/s ≤ c
which proves (12).

From (4) we know that for allx ∈ (c, y] there exists ansx > 0 with sx ∈ S and

f (x) = f (c)+ sx · (x − c).
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Figure 2. Generation of the pruning pointp with known f̃ .

Therefore,f (x) > f (c), ∀x ∈ (c, y], which directly proves (13) and (14) for
p = c.

Now, letp < c. For the casem = (y − c) · s, Theorem 1 impliesy ≤ p and

min
p<x≤y

f (x) > min
x∈Y

f (x) ≥ f ∗.

For the casem = f̃ − f (c), we assume that there exists anx∗ ∈ Z := Y ∩ (p, c]
with f (x∗) = f ∗. Then we know that there exists ans∗ ∈ S satisfyingf (x∗) =
f (c)+ s∗ · (x∗ − c). Thus we have

f (x∗) = f (c)+ s∗ · (x∗ − c)
≥ f (c)+ s · (x∗ − c)
> f (c)+ s · (p − c)
= f (c)+ s · (m/s)
= f (c)+m
= f̃ ,

which contradicts (11), and thereforex∗ 6∈ Z, which proves (13) and (14). 2
REMARK. It is easy to see, that in the casẽf < f (c) + (y − c) · s the valuep
computed in Theorem 1 is smaller than that computed in Theorem 2.

Figure 2 illustrates the geometrical interpretation for finding the pointp when
using the known upper bound̃f for the global minimum value. Again we use the
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two lines

g : R→ R g(x) := f (c)+ s · (x − c)
and

h : R→ R h(x) := f (c)+ s · (x − c).
Then we know that̃f is an upper bound for minx∈Y f (x). Now we can locatep as
the leftmost point inY , for whichf cannot fall belowf̃ . Sinceh is a lower bound
for f in [y, c], we can do this very simply by computing the intersection point of
h and the horizontal linez with z(x) = f̃ .

So, we can use Theorem 2 within a global optimization method to prune or
delete a subintervalY ⊆ X, if 0 < s ≤ s for S = [s, s] = sf (c, Y ). That is, we
first compute

m = min{f̃ − f (c), (y − c) · s}
and then

p = c +m/s ≤ c.
Then, ifp ≥ y, we replaceY by

Y := [y, p],
otherwise we delete the whole subboxY .

It is easy to see, that we can apply a similar procedure for pruning in the case
s < 0, since we immediately have

THEOREM 3. Letf : D→ R, Y = [y, y] ∈ I, c ∈ Y ⊆ X ⊆ D ⊆ R. Moreover,
let S = [s, s] = sf (c, Y ) with s < 0 and

f̃ ≥ f ∗ = min
x∈X

f (x). (15)

Thenq := c +m/s withm = min{f̃ − f (c), (y − c) · s} satisfies

c ≤ q, (16)

and

min
y≤x<q f (x) > f ∗ for q ≤ y (17)

or

min
x∈Y

f (x) > f ∗ for y < q, (18)

respectively.
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Proof.The proof is completely analogous to the proof of Theorem 2. 2
Up to now, we have treated the case 06∈ sf (c, Y ), which corresponds to the

(successful) case 06∈ F ′(Y ) in the usual monotonicity test. A further advantage
of our new pruning technique with slopes is, that we also can apply this technique
successfully in the case 0∈ sf (c, Y ), which corresponds in a sense to the (unsuc-
cessful) case 0∈ F ′(Y ) for the usual monotonicity test. For this purpose we can
use the following

THEOREM 4. Letf : D→ R, Y = [y, y] ∈ I, c ∈ Y ⊆ X ⊆ D ⊆ R. Moreover,
let S = [s, s] = sf (c, Y ) with 0 ∈ S and

f (c) > f̃ ≥ f ∗ = min
x∈X

f (x). (19)

Then

p :=
{
c + (f̃ − f (c))/s if s 6= 0,
−∞ otherwise,

q :=
{
c + (f̃ − f (c))/s if s 6= 0,
+∞ otherwise,

and

Z := (p, q) ∩ Y
satisfy

p < c < q, (20)

and

min
x∈Z f (x) > f ∗. (21)

Proof.Sincef̃ − f (c) < 0 and withs < 0< s, we have

p = c + (f̃ − f (c))/s < c < c + (f̃ − f (c))/s = q,
which proves (20).

Now, we assume that there exists anx∗ ∈ Z with f (x∗) = f ∗. Then we know
that there exists ans∗ ∈ S satisfyingf (x∗) = f (c)+ s∗ · (x∗ − c).

We also know thatx∗ 6= c, since equality would contradict (19).
If x∗ < c, then we have 0< s∗ ≤ s and

f (x∗) = f (c)+ s∗ · (x∗ − c)
≥ f (c)+ s · (x∗ − c)
> f (c)+ s · (p − c)
= f (c)+ s · (f̃ − f (c))/s
= f̃ ,
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Figure 3. Generation of pruning pointsp andq with known f̃ < f (c).

which contradicts (19).
If x∗ > c, then in a similar way we have s≤ s∗ < 0 and

f (x∗) = f (c)+ s∗ · (x∗ − c)
≥ f (c)+ s · (x∗ − c)
> f (c)+ s · (q − c)
= f (c)+ s · (f̃ − f (c))/s
= f̃ ,

which also contradicts (19).
Thereforex∗ 6∈ Z and we proved (21). 2
We illustrate the geometrical interpretation for finding the pointsp andq in

Figure 3. Again we use the two lines

g : R→ R g(x) := f (c)+ s · (x − c)
and

h : R→ R h(x) := f (c)+ s · (x − c),
assumings < 0 < s. Now we can locatep as the leftmost point andq as the
rightmost point inY , for which f cannot fall belowf̃ according to the bounding
by g andh. Sinceh is a lower bound forf in [y, c] and sinceg is a lower bound
for f in [c, y], we can do this very simply by computing the intersection points of
h andg with the horizontal linez with z(x) = f̃ .
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So, we can use Theorem 4 within a global optimization method to prune or
delete a subintervalY ⊆ X, if s ≤ 0 ≤ s for S = sf (c, Y ) and if f̃ < f (c). That
is, we first compute

p = c + (f̃ − f (c))/s and q = c + (f̃ − f (c))/s.
Then, we replaceY by

[y, p] ∪ [q, y] if y ≤ p ∧ q ≤ y,
[y, p] if y ≤ p ∧ q > y,

[q, y] if y > p ∧ q ≤ y,
and otherwise we delete the whole subboxY . If f̃ ≥ f (c), then we only perform a
bisection ofY .

REMARK. Comparing the the proof of Test 2 in [7] with the proofs of our Theo-
rems 2, 3 and 4, we notice that different case distinctions with respect toS are used.
Moreover, in [7] it is only proven thatf (x) ≥ f̃ ≥ f ∗ for x in the deleted parts
of the intervalY . In contrast, we additionally proved that the pruning step does not
delete any globalminimizer, i.e.f (x) > f ∗ for x in the deleted parts ofY .

EXAMPLE 5. If we apply our pruning technique to the three times differentiable
function

f (x) =
{

0 if x < 0
x2 if x ≥ 0

for X = [−3,1], c = −1, f̃ = 0, andS = [0,1], it results in a bisection ofX.
Thus, no global optimizer is lost.

If we apply Test 2 from [7], we obtain the cord-slope interval[L0, U0] =
[0,1] = S and

y = c − (f (c)− f̃ )/U0 = −1− (0− 0)/1= −1.

Therefore, the test deletes the interval(−1,1], and the subset(−1,0] of the set of
global optimizers[−3,0] is completely lost!

Nevertheless, the cord-slope technique works correctly for functions with only
finitely many local minima such as polynomials, for example.

4. An algorithmic pruning step

We are now able to give an algorithmic formulation of a pruning step, which can be
applied to a subintervalY ⊆ X when globally minimizingf : D→ R onX ⊆ D.
The algorithm uses

Y = [y, y], c ∈ Y, fc = f (c), S = [s, s] = sf (c, Y ), andf̃ ≥ min
x∈X

f (x)
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as input, and it delivers the pruned (and possibly empty) subsetU1 ∪ U2 of Y with
U1, U2 ∈ I ∪ {∅} and a possibly improved̃f as output.

ALGORITHM 1. SlopePruning (Y, c, fc, S, f̃ , U1, U2)

1. U1 := ∅; U2 := ∅;
2. if 0 ∈ S then {pruning from the center}
3. if f̃ < fc then {a pruning is possible}
4. if s > 0 then {pruning from the center to the left}
5. p := c + (f̃ − fc)/s;
6. if p ≥ y then U1 := [y, p]; {compute remaining left part}
7. if s < 0 then {pruning from the center to the right}
8. q := c + (f̃ − fc)/s;
9. if q ≤ y then U2 := [q, y]; {compute remaining right part}
10. else {a pruning is not possible}
11. U1 := [y, c]; U2 := [c, y]; {bisection}
12.else if s > 0 then {pruning from right}
13. f̃ := min{f̃ , (y − c) · s + fc}; {updatef̃ }

14. p := c + (f̃ − fc)/s;
15. if p ≥ y then U1 := [y, p]; {compute remaining left part}
16.else { s < 0} {pruning from left}
17. f̃ := min{f̃ , (y − c) · s + fc}; {updatef̃ }
18. q := c + (f̃ − fc)/s;
19. if q ≤ y then U2 := [q, y]; {compute remaining right part}
20.return U1, U2, f̃ ;

Summarizing the properties of this pruning step, we can state

THEOREM 5. Let f : D → R, Y ∈ I, c ∈ Y ⊆ X ⊆ D ⊆ R. Moreover, let
fc = f (c), S = sf (c, Y ), and f̃ ≥ minx∈X f (x), then Algorithm 1 applied as
SlopePruning (Y, c, fc, S, f̃ , U1, U2) has the following properties:
1. U1 ∪ U2 ⊆ Y .
2. Every global optimizerx∗ of f in X with x∗ ∈ Y satisfiesx∗ ∈ U1 ∪ U2.
3. If U1 ∪ U2 = ∅, then there exists no global (w.r.t.X) optimizer off in Y .

Proof. Property 1 follows from the definition ofU1 andU2. Theorems 2 to 4
directly imply Property 2. Property 3 is a consequence of Property 2.

It is obvious that the success of Algorithm 1 in pruningY depends on the quality
of f̃ . Therefore, the pruning step within a global optimization method can very
much benefit from a fast local search method delivering a good (small) valuef̃ on
a very early stage of the method. For our further studies in this paper, we do not
use an additional local method.

5. A global optimization algorithm using pruning steps

Subsequently, we give a simple first-order model algorithm to demonstrate the
advantages of our new pruning step. Our model algorithm uses the cut-off test,
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but it includes no local search procedure. Since we do not require smoothness of
the objective function, we also do not use a concavity test and Newton-like steps.

ALGORITHM 2. GlobalOptimize (f,X, ε, F ∗, Lres)

1. c := m(X); f̃ := f (c); {initialize upper bound}
2. FX := (f (c)+ sf (c, X) · (X − c)) ∩ F(X); {centered form}
3. L := {(X, fX)}; Lres := { }; {initialize working list and result list}
4. while L 6= { } do
5. (Y, fY ) := PopHead (L); c := m(Y); {get first element of working list}

6. SlopePruning (Y, c, f (c), sf (c, Y ), f̃ , U1, U2);
7. for i := 1 to 2 do
8. if Ui = ∅ then nexti ;
9. c := m(Ui);
10. if f (c) < f̃ then f̃ := f (c);
11. FU := (f (c)+ sf (c, Ui) · (Ui − c)) ∩ F(Ui); {centered form}
12. if fU ≤ f̃ then
13. if drel(FU ) ≤ ε or drel(Ui) ≤ ε then
14. Lres := Lres] (Ui , fU ) {acceptUi for the result list}
15. else
16. L := L ] (Ui, fU ); { storeUi in the working list}
17. end for
18. CutOffTest (L, f̃ );
19. end while
20. (Y, fY ) := Head (Lres); F∗ := [fY , f̃ ]; CutOffTest (Lres, f̃ );
21. return F∗, Lres.

Algorithm 2 first computes an upper bound̃f for the global minimum value
and initializes the working listL and the result listLres. The main iteration (from
Step 4 to Step 19) starts with the pruning step applied to the leading interval of the
working list. Then we apply a range check using a centered form to the resulting
boxesU1 andU2 if they are non-empty. If the current box is still a candidate for
containing a global minimizer, we store it inLres (if it can be accepted with respect
to the toleranceε) or inL if it must be treated further.

Note that by the operation] the boxes are stored as pairs(Y, fY ) in list L
sorted innondecreasingorder with respect to the lower boundsfY ≤ frg(Y ) and
in decreasingorder with respect to the ages of the boxes inL (cf. [13]). Thus,
the leading box ofL is the oldest element with the smallestfY value. When the
iteration stops because the working listL is empty, we compute a final enclosure
F ∗ for the global minimum value and returnLres andF ∗.

The method can be improved by incorporating an approximate local search
procedure to try to decrease the valuẽf . For our studies in this paper, we do not
apply any local method. The cut-off test is given by
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ALGORITHM 3. CutOffTest (L, f̃ )

1. for all (Y, fY ) ∈ L do
2. if f̃ < fY then L := L ∪- (Y, fY );
3. end for
4. return L;

whereL ∪- (Y, fY ) removes the element(Y, fY ) fromL.

For our global optimization algorithm (Algorithm 2) we can state

THEOREM 6. Letf : D → R, X ⊆ D ⊆ R, andε > 0. Then Algorithm 2 has
the following properties:
1. f ∗ ∈ F ∗.
2. X∗ ⊆

⋃
(Y,fY )∈Lres

Y .

Proof. Since the lists are sorted in non-decreasing order with respect to thefY

values and sincẽf is an upper bound off ∗, assertion 1 is proved. Assertion 2
follows from the fact that neither the cut-off test nor the slope pruning step (due to
Theorem 5) deletes boxes which contain a global minimizer off . 2
EXAMPLE 6. To demonstrate the performance of our global optimization algo-
rithm using pruning steps, we give an extract (about the first 9 steps) of the protocol
of the pruning steps when applying Algorithm 2 on function

f (x) = (x − a)2
20

− cos(x − a)+ 2

with a = 1.125 and starting intervalX = [−5,5].
For each current boxY in the while loop, we list its value, the value of the slope

S = sf (c, Y ), the chosen pruning step, and the resulting boxesU1 andU2. The
empty set is represented by[ / ].

Y = [ -5.000E+000, 5.000E+000 ] S = [ -1.363E+000, 1.138E+000 ]

==> bisection necessary

==> U1 = [ -5.000E+000, 0.000E+000 ] U2 = [ 0.000E+000, 5.000E+000 ]

Y = [ 0.000E+000, 5.000E+000 ] S = [ -8.898E-001, 1.263E+000 ]

==> pruning by punching

==> U1 = [ 0.000E+000, 2.288E+000 ] U2 = [ 2.801E+000, 5.000E+000 ]

Y = [ 0.000E+000, 2.288E+000 ] S = [ -9.576E-001, 9.771E-001 ]

==> bisection necessary

==> U1 = [ 0.000E+000, 1.144E+000 ] U2 = [ 1.143E+000, 2.288E+000 ]
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Y = [ 0.000E+000, 1.144E+000 ] S = [ -9.862E-001, -7.798E-003 ]

==> pruning from left

==> U1 = [ / ] U2 = [ 7.384E-001, 1.144E+000 ]

Y = [ 7.384E-001, 1.144E+000 ] S = [ -4.056E-001, 1.067E-002 ]

==> pruning by punching

==> U1 = [ / ] U2 = [ 9.863E-001, 1.144E+000 ]

Y = [ 9.863E-001, 1.144E+000 ] S = [ -1.481E-001, 1.687E-002 ]

==> pruning by punching

==> U1 = [ / ] U2 = [ 1.077E+000, 1.144E+000 ]

Y = [ 1.077E+000, 1.144E+000 ] S = [ -5.098E-002, 1.913E-002 ]

==> bisection necessary

==> U1 = [ 1.077E+000, 1.111E+000 ] U2 = [ 1.110E+000, 1.144E+000 ]

Y = [ 1.110E+000, 1.144E+000 ] S = [ -1.510E-002, 1.997E-002 ]

==> bisection necessary

==> U1 = [ 1.110E+000, 1.128E+000 ] U2 = [ 1.127E+000, 1.144E+000 ]

Y = [ 1.110E+000, 1.128E+000 ] S = [ -1.552E-002, 2.018E-003 ]

==> pruning by punching

==> U1 = [ / ] U2 = [ 1.120E+000, 1.128E+000 ]

6. Implementation

In our implementation of Algorithms 1 and 2, we had to be aware of the fact,
that the evaluation off (c) must be carried out in interval arithmetic to bound all
rounding errors. Moreover, in practical computations we haveS ⊃ sf (c, Y ), i.e. S
is possibly an overestimation of the true interval slope. Therefore, the formulas for
computing the valuesp andq in the pruning step differ from the theoretical ones,
and the machine versions of Theorems 1–4 need a somewhat different proof. Also,
we have to take special care of correct rounding when computingp andq in the
pruning step and of the correct use of interval evaluations instead of real evaluations
where necessary. Details on our practical realization and implementation of the
interval slope arithmetic and the algorithm itself are treated in [14].

To test our new slope pruning technique we used an implementation within
the toolbox environment from [5]. We implemented Algorithm 2 together with an
interval slope arithmetic to compute the interval slopes be means of an automatic
differentiation process. Note that the version of the slope arithmetic used for the test
does not include special techniques to make use of locally convex or concave parts
of the elementary functions like sinx, cosx, etc. at the moment (see the definition
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of sϕ(Uc, Ux) at the end of Section 2). So we should keep in mind that the results
for the slope enclosures can (in parts) be improved further.

7. Test results

7.1. SMOOTH PROBLEMS

In the following examples we demonstrate that (for smooth problems) the method
using the pruning technique is superior to a similar method using first order infor-
mation in form of derivative evaluations. We compare the pruning method with a
corresponding method using the monotonicity test. For this alternative method we
used Algorithm 2 with the modification that Steps 2, 6, and 10 were replaced by

2. FX := (f (c)+ F ′(X) · (X − c)) ∩ F(X);
6. CheckMonotonicity (Y, c, F ′(Y ), X, U1, U2);

10. FU := (f (c)+ F ′(Ui) · (Ui − c)) ∩ F(Ui);
The used algorithm forCheckMonotonicity is given by

ALGORITHM 4. CheckMonotonicity (Y, c,D,X,U1, U2)

1.U1 := ∅; U2 := ∅;
2. if 0 ∈ D then
3. U1 := [y, c]; U2 := [c, y]; {bisection}
4. else if d > 0 and x = y then
5. U1 := [y, y]; {reduce to left boundary point}

6. else if d < 0 and x = y then
7. U2 := [y, y]; {reduce to right boundary point}
8.return U1, U2;

Note, that in Algorithm 4 we must take care of the boundary points of the
original search regionX which may be global minimizers without being stationary
points.

Now, we compare the two methods for two examples.

EXAMPLE 7. We minimizef (x) = x2/20− cos(x)+ 2.

Applying our model algorithmusing derivatives and monotonicity tests, we get

Search interval : [-20,20]

Tolerance (relative) : 1E-8

No. of function calls : 150

No. of derivative calls : 75

No. of bisections : 37

Necessary list length : 2

Run-time (in sec.) : 0.700

Global minimizer in : [-7.6293945312500E-005, 7.6293945312500E-005 ]

Global minimum value in : [ 1.0000000000000E+000, 1.0000000000001E+000 ]



A NONSMOOTH GLOBAL OPTIMIZATION TECHNIQUE 385

Applying Algorithm 2using slopes and the new pruning steps, we get

Search interval : [-20,20]

Tolerance (relative) : 1E-8

No. of function calls : 58

No. of slope calls : 29

No. of bisections : 1

Necessary list length : 2

Run-time (in sec.) : 0.270

Global minimizer in : [-7.4615903941273E-005, 7.4615903941273E-005 ]

Global minimum value in : [ 1.0000000000000E+000, 1.0000000000001E+000 ]

EXAMPLE 8. We minimizef (x) = 24x4 − 142x3 + 303x2 − 276x+ 93, given
by E. Hansen [6].
Applying our model algorithmusing derivatives and monotonicity tests, we get

Search interval : [0,3]
Tolerance (relative) : 1E-8
No. of function calls : 956
No. of derivative calls : 478
No. of bisections : 238
Necessary list length : 25
Run-time (in sec.) : 0.450
Global minimizer in : [ 1.999990940E+000, 2.000009536E+000 ]
Global minimum value in : [ 9.999999982E-001, 1.000000001E+000 ]

Applying Algorithm 2using slopes and the new pruning steps, we get

Search interval : [0,3]
Tolerance (relative) : 1E-8
No. of function calls : 488
No. of slope calls : 244
No. of bisections : 12
Necessary list length : 15
Run-time (in sec.) : 0.180
Global minimizer in : [ 1.999997019E+000, 2.000009781E+000 ]
Global minimum value in : [ 9.999999996E-001, 1.000000001E+000 ]

We carried out further numerical tests for smooth problems on a HP 9000/730,
and we used the set of 20 test functions given in the appendix. In Table 1, we give
an overview of the results obtained withε = 10−8. For each test function we list
the number of function evaluations, the number of derivative or slope evaluations,
the number of bisections, the necessary list length and the required CPU time. The
columns with the header M contain the values for the variant with Monotonicity
test, those with the header P contain the values for the variant with slope Pruning
step, and those with the header (P/M) contain the percentage of the slope method
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Table 1. Results for the complete test set when using the monotonicity test (M) and the slope pruning
step (P), respectively

F eval. D or S eval. Bisections List length Execution time

no. M P ( P/M) M P ( P/M) M P (P/M) M P ( P/M) M P (P/M)

1 142 98 ( 69%) 71 49 ( 69%) 35 13 (37%) 5 4 ( 80%) 0.930 0.770 (83%)

2 346 314 ( 91%) 173 157 ( 91%) 86 5 ( 6%) 17 18 (106%) 8.390 8.320 (99%)

3 194 154 ( 79%) 97 77 ( 79%) 48 7 (15%) 4 4 (100%) 1.030 0.840 (82%)

4 142 116 ( 82%) 71 58 ( 82%) 35 8 (23%) 3 4 (133%) 2.450 2.070 (84%)

5 526 400 ( 76%) 263 200 ( 76%) 131 9 ( 7%) 9 9 (100%) 3.180 2.220 (70%)

6 1234 618 ( 50%) 617 309 ( 50%) 308 6 ( 2%) 29 16 ( 55%) 0.580 0.220 (38%)

7 956 488 ( 51%) 478 244 ( 51%) 238 12 ( 5%) 25 15 ( 60%) 0.450 0.180 (40%)

8 82 82 (100%) 41 41 (100%) 20 5 (25%) 4 4 (100%) 1.100 1.080 (98%)

9 106 90 ( 85%) 53 45 ( 85%) 26 10 (38%) 4 3 ( 75%) 0.230 0.190 (83%)

10 106 98 ( 92%) 53 49 ( 92%) 26 9 (35%) 5 5 (100%) 0.120 0.090 (75%)

11 310 162 ( 52%) 155 81 ( 52%) 77 7 ( 9%) 10 7 ( 70%) 0.360 0.140 (39%)

12 150 58 ( 39%) 75 29 ( 39%) 37 1 ( 3%) 2 2 (100%) 0.700 0.270 (39%)

13 66 56 ( 85%) 33 28 ( 85%) 16 11 (69%) 2 2 (100%) 0.020 0.010 (50%)

14 166 78 ( 47%) 83 39 ( 47%) 41 1 ( 2%) 2 2 (100%) 0.750 0.320 (43%)

15 78 62 ( 79%) 39 31 ( 79%) 19 9 (47%) 2 3 (150%) 0.380 0.330 (87%)

16 142 54 ( 38%) 71 27 ( 38%) 35 1 ( 3%) 2 2 (100%) 0.260 0.100 (38%)

17 308 144 ( 47%) 154 72 ( 47%) 76 10 (13%) 11 7 ( 64%) 0.750 0.360 (48%)

18 582 252 ( 43%) 291 126 ( 43%) 145 3 ( 2%) 12 6 ( 50%) 0.240 0.090 (38%)

19 98 82 ( 84%) 49 41 ( 84%) 24 7 (29%) 5 4 ( 80%) 0.500 0.480 (96%)

20 78 70 ( 90%) 39 35 ( 90%) 19 9 (47%) 2 2 (100%) 0.030 0.020 (67%)

∑
5812 3476 ( 60%) 2906 1738 ( 60%) 1442 143 (10%) 155 119 ( 77%) 22.45 18.10 (81%)

Ø ( 69%) ( 69%) (21%) ( 91%) (65%)

with respect to the derivative method. The last row of the table gives average values
for the complete test set.

According to our numerical tests, our new method is always better than or at
least as good as the traditional method with monotonicity test (with the exception
of few cases where the list length was worse). On average, we have more than
30% improvement in the computation time and the number of function or deriva-
tive/slope evaluations, if we use our new pruning step. Moreover, there are many
examples for which the required CPU time is reduced to around 1/3 of the time
required by the old variant.
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7.2. NONSMOOTH PROBLEMS

The most important fact is that the pruning technique is also applicable to non-
smooth problems, because interval slopes are computable for nondifferentiable
functions, too. Therefore, we are able to use first-order information of the func-
tion within a global optimization method when applying it to nondifferentiable
functions. We conclude this section by some nonsmooth examples.

EXAMPLE 9. We minimizef (x) =
5∑
k=1

k| cos((k + 1)x + k)| + 5.
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With Algorithm 2 we obtain:

Search interval : [-10,10]

Tolerance (relative) : 1E-8

No. of function eval. : 412

No. of slope eval. : 206

No. of bisections : 6

Necessary list length : 31

Run-time (in sec.) : 0.430

Global minimizer in : [ -7.397344586683E+000, -7.397344529213E+000 ]

Global minimizer in : [ -4.255751923713E+000, -4.255751914035E+000 ]

Global minimizer in : [ -1.114159270123E+000, -1.114159265284E+000 ]

Global minimizer in : [ 2.027433383466E+000, 2.027433388306E+000 ]

Global minimizer in : [ 5.169026037056E+000, 5.169026085146E+000 ]

Global minimizer in : [ 8.310618653412E+000, 8.310618700324E+000 ]

Global minimum value in : [ 6.699793627703E+000, 6.699793776608E+000 ]

EXAMPLE 10. We minimizef (x) = |(x − 1)/4| + | sin(π(1+ (x − 1)/4))| + 1.
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With Algorithm 2 we obtain:

Search interval : [-10,10]

Tolerance (relative) : 1E-8

No. of function eval. : 38

No. of slope eval. : 19

No. of bisections : 5

Necessary list length : 2

Run-time (in sec.) : 0.020

Global minimizer in : [ 9.999999997437E-001, 1.000000000257E+000 ]

Global minimum value in : [ 1.000000000000E+000, 1.000000000001E+000 ]

EXAMPLE 11. We minimizef (x) = min{| cos(πx/2)| − 3 sin(πx/10),50|x−
1| − 3}.
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With Algorithm 2 we obtain:
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Search interval : [0,8]

Tolerance (relative) : 1E-8

No. of function eval. : 58

No. of slope eval. : 29

No. of bisections : 5

Necessary list length : 4

Run-time (in sec.) : 0.040

Global minimizer in : [ 1.000000000000E+000, 1.000000000000E+000 ]

Global minimizer in : [ 4.999999986829E+000, 5.000000000008E+000 ]

Global minimum value in : [ -3.000000000000E+000, -3.000000000000E+000 ]

EXAMPLE 12. We minimizef (x) = −
10∑
i=1

1

|ki(x − ai)| + ci with a, c, andk as

given for the smooth test function number 10 given in the appendix.
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With Algorithm 2 we obtain:

Search interval : [0,10]

Tolerance (relative) : 1E-8

No. of function eval. : 114

No. of slope eval. : 57

No. of bisections : 18

Necessary list length : 6

Run-time (in sec.) : 0.180

Global minimizer in : [ 6.739999979030E-001, 6.740000037738E-001 ]

Global minimum value in : [ -1.401836081085E+001, -1.401836055728E+001 ]

EXAMPLE 13. We minimizef (x) = |x − 1|(1+ 10|sin(x + 1)|)+ 1.
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With Algorithm 2 we obtain:

Search interval : [-10,10]

Tolerance (relative) : 1E-8

No. of function eval. : 44

No. of slope eval. : 22

No. of bisections : 6

Necessary list length : 2

Run-time (in sec.) : 0.020

Global minimizer in : [ 9.999999998471E-001, 1.000000000222E+000 ]

Global minimum value in : [ 1.000000000000E+000, 1.000000000322E+000 ]

8. Summary

In this paper we introduced a new pruning technique based on interval slopes which
can be very successfully applied in interval branch-and-bound methods for global
optimization. We showed, that for smooth problems this technique can replace
the often used monotonicity test and we showed the practical effect of such a re-
placement, ie. a considerable improvement in efficiency for our global optimization
algorithm.

Moreover, since interval slopes are computable for non-differentiable functions
too, the new pruning technique is also applicable to nonsmooth problems. There-
fore, we are able to use first-order information of the function within a global
optimization method when applying it to non-differentiable functions.
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Appendix: Smooth test functions, search boxes, and solutions

The test set of smooth problems consists of one-dimensional problems collected
in [16] (which “well represent practical problems”), problems presented in [4] and
[6], and some new problems.

1. f (x) = (x + sinx) · e−x2
, X = [−10,10], (taken from [16])

X∗ = {−0.6795...}, f ∗ = −0.8242....

2. f (x) = −
5∑
k=1

k sin((k + 1)x + k), X = [−10,10], (taken from [16])

X∗ = {−6.774...,−0.4913...,5.791...}, f ∗ = −12.03....
3. f (x) = sinx, X = [0,20],
X∗ = {3π2 , 7π

2 ,
11π

2 }, f ∗ = −1.
4. f (x) = e−3x − sin3 x, X = [0,20], (taken from [4])

X∗ = {9π2 }, f ∗ = e
27π

2 − 1.

5. f (x) = sin
1

x
, X = [0.02,1],

X∗ = { 2
(4k−1)π | k = 1, . . . ,6}, f ∗ = −1.

6. f (x) = x4 − 10x3 + 35x2 − 50x+ 24, X = [−10,20],
X∗ = {5−

√
5

2 , 5+√5
2 }, f ∗ = −1.

7. f (x) = 24x4 − 142x3 + 303x2 − 276x+ 93, X = [0,3], (taken from [6])

X∗ = {2}, f ∗ = 1.

8. f (x) = sinx + sin
10x

3
+ ln x − 0.84x, X = [2.7,7.5], (taken from [16])

X∗ = {5.1997...}, f ∗ = −4.601....

9. f (x) = 2x2 − 3

100
e−(200(x−0.0675))2, X = [−10,10], (taken from [4])

X∗ = {0.06738...}, f ∗ = −0.02090.

10. f (x) = −
10∑
i=1

1

(ki(x − ai))2+ ci , X = [0,10], (taken from [16])

a = (3.040,1.098,0.674,3.537, 6.173,8.679,4.503,3.328,6.937,0.700),
k = (2.983,2.378,2.439,1.168,2.406,1.236,2.868,1.378,2.348,2.268),
c = (0.192,0.140,0.127,0.132,0.125,0.189,0.187,0.171,0.188, 0.176),

X∗ = {0.6858...}, f ∗ = −14.59....

11. f (x) = −
10∑
i=1

1

(ki(x − ai))2+ ci , X = [0,10], (taken from [16])

a = (4.696,4.885,0.800,4.986, 3.901,2.395,0.945,8.371,6.181,5.713),
k = (2.871,2.328,1.111,1.263,2.399,2.629,2.853,2.344,2.592,2.929),
c = (0.149,0.166,0.175,0.183,0.128,0.117,0.115,0.148,0.188, 0.198),
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X∗ = {4.855...}, f ∗ = −13.92....

12. f (x) = x2

20
− cosx + 2, X = [−20,20],

X∗ = {0}, f ∗ = 1.

13. f (x) = − 1

(x − 2)2+ 3
, X = [0,10],

X∗ = {2}, f ∗ = 1
3.

14. f (x) = x2 − cos(18x), X = [−5,5],
X∗ = {0}, f ∗ = −1.

15. f (x) = (x − 1)2(1+ 10 sin2(x + 1))+ 1, X = [−10,10],
X∗ = {1}, f ∗ = 1.

16. f (x) = ex
2
, X = [−10,10],

X∗ = {0}, f ∗ = 1.
17. f (x) = x4 − 12x3 + 47x2 − 60x− 20e−x , X = [−1,7], (taken from [4])

X∗ = {0.7136...}, f ∗ = −32.78....
18. f (x) = x6 − 15x4 + 27x2 + 250, X = [−4,4], (taken from [6])

X∗ = {−3,3}, f ∗ = 7.

19. f (x) = sin2

(
1+ x − 1

4

)
+
(
x − 1

4

)2

, X = [−10,10],
X∗ = {−0.7878...}, f ∗ = 0.4756....

20. f (x) = (x − x2)2+ (x − 1)2, X = [−10,10],
X∗ = {1}, f ∗ = 0.
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